[摘要] 地铁相对于既有的公路交通系统而言,具有运量大、能耗低、交通效率高、准时准点性好、快速安全等优点,已成为现代城市地下空间建设的重点。在设计过程中,很多设计人员在结构设计过程中基本概念混淆、错误。因此,我们来回顾下它的设计要点。
1 混凝土结构承载力设计的发展
从历史来看,混凝土结构的设计先后经历了容许应力法、破损阶段设计法、多系数界限状态设计法、概率极限设计法,目前《混凝土结构设计规范》就是采用的概率极限设计法。
1、如果单从承载力设计方法来考虑,允许应力或破损阶段法至少落后现行混凝土规范半个世纪。
2、当然,《铁路隧道设计规范》沿用有一定的原因,根据相关文献的解释,是因为地下结构、特别是深埋隧道类,是荷载计算不清晰造成的。
3、若采用允许应力或破损阶段法设计,所有的钢筋、混凝土等参数不应该选用混凝土规范上的,因为基本统计原理不一样。
2 地铁区间隧道的荷载取值
1、矿山法隧道基本原则:
深埋隧道荷载按照塌落拱计算、浅埋隧道按照松散荷载计算、超浅埋隧道按照全土柱加地面动、静荷载计算。在我们实际工作中,可参照以下步骤进行荷载选取:
1)初判:只有当覆土大于2(或2.5)倍塌落拱高度时,采用塌落拱计算荷载。
2)建议矿山法隧道按照《铁路隧道设计规范》计算竖向荷载。首先判断荷载等效高度(类似于塌落拱)。
当埋深时,按照深埋处理,荷载取为;
当埋深时,按照浅埋荷载计算,按公式计算(计算较为繁琐);
当埋深时,按照超浅埋荷载计算,取全土柱荷载。
2、盾构法隧道荷载计算方法:
1)盾构法计算荷载采用太沙基公式计算,已经在国内各家设计院及主流参考书籍中取得共识。
2)一般可以参考12m覆土作为一个深浅埋的分界,但注意最终计算应以太沙基公式计算为准。
3)上述计算中如何考虑土层的c、φ值。
4)应注意如何考虑活载组合。
3 地铁区间隧道合算、分算的问题
1)隧道分算与合算原则与车站一致,一般是按照土层的渗透系数确定。
2)应注意合算或是分算,隧道与车站结构存在明显区别!
对于纯圆型结构,在承受四周均布荷载的情况下只产生轴力、不产生弯矩。对于盾构这种圆形结构,在承受近似于均布荷载的水压力情况下,水压力对结构产生轴向力,结构趋于安全。故采用水土合算趋于安全(即计算的轴力偏小,弯矩偏大)。
对于马蹄形结构,采用水土合算还是分算,应该根据实际情况确定。一般情况下合算计算偏于安全。
4 地铁区间隧道线路曲线
1)区间线路应注意限界偏移值。
2)区间纵断面应注意最低点不处于直线坡度最低点,而是偏向于小坡度方向。具体里程应根据计算确定。
3)应准确的计算最低点里程和标高。
4)一般竖曲线不建议进入车站,若进入车站,建筑设计人员可以直接从线路图中量取出去,误差不大。
5)在左右坡度一致的情况下,最低点与轨道最低点重合。
5 地下结构抗震设计
1)地面建筑一般设防目标:三水准、两阶段设防。即小震不坏、中震可修、大震不倒。
2)地下结构设防目标:二水准、一阶段设防。即小震不坏、中震不坏、大震可修。一阶段表示为采用设防地震烈度下,采用设防烈度地震参数进行地震验算,通过概念设计或构造措施满足罕遇地震设防要求。
3)地震安全评估报告的取值:50年使用年限时,多遇地震为50年超越概率为62%的地震参数,重现期为50年;100年使用年限时,采用设防烈度地震100年超越概念为10%的地震参数,重现期475年。
6 地铁区间隧道超前支护
1)在一般情况下应优先选用格栅钢架。
2)除非隧道内抢险等特殊情况,一般情况下不应采用型钢钢架支护,原因如下:
很多人认为型钢钢架强度高是最大的优点。但是无论是格栅钢架还是型钢钢架,在与混凝土联合受力以后,两者的刚度差别不大;
隧道开挖前2榀钢架不受力,也不存在及时受力的问题;
型钢钢架背后无法喷射混凝土,容易形成空隙。且与喷射混凝土结合不好。
3)一般情况下,超前支护小导管长度应该为台阶高度+1m。所以,小导管长度5m是指台阶高度2.5m的情况。
以上就是建筑界结构频道为您带来的“地铁作为重要交通工程,它的设计要点你知道吗?”内容,建筑界结构频道分享更多结构知识来帮助你学习施工技巧,寻找建筑之美,探索建筑之路,欢迎关注我们~